
University of Trento

Department of Cellular, Computational and
Integrative Biology (CIBIO)

Bachelor’s Degree in Biomolecular Sciences and
Technologies

∼ · ∼

Academic Year 2022–2023

Development of a machine
learning approach for the
prediction of RG4-binding

proteins

Supervisor
Prof. Erik Dassi

Graduate Student
Roberto Togni

223530

Final examination date: July 3, 2023

2

Abstract

The discovery of RNA G-quadruplexes (RG4s) and RG4-binding proteins (RG4BPs) has opened
up exciting possibilities in the field of RNA biology. RG4s are unique four-stranded secondary
structures formed by guanine-rich regions found in various functional regions of RNA, including
telomeres, untranslated regions (UTRs) of mRNA, and regulatory elements within long non-
coding RNAs (lncRNAs).

RG4s play a crucial role in a wide range of biological processes and regulatory mechanisms,
such as translation, alternative splicing, and mRNA stability. Their functional repertoire is fur-
ther expanded by their interaction with RG4BPs, a diverse group of proteins that recognize and
bind to RG4 structures, thereby influencing their stability, accessibility, and biological functions.

In this work, we used a computational approach to facilitate the identification of novel
RG4BPs. After constructing a dataset by merging information from different databases, we
explored state-of-the-art machine learning techniques to create predictive models. Autokeras,
an automated machine learning framework, was utilised to build a baseline model capable of
detecting potential RG4BPs from the dataset. We then delved deeper into model optimisation
using Keras, fine-tuning hyperparameters to enhance performance. We finally combined the
predictions of three different models, identifying a small number of putative RG4BPs.

ii

Contents

1 Introduction 1
1.1 Post-Transcriptional Regulation of Gene Expression 1

1.1.1 Non-Coding RNAs . 2
1.1.2 Cis Elements . 3
1.1.3 RNA-Binding Proteins . 3

1.2 RNA G-Quadruplexes . 3
1.3 RG4-Binding Proteins . 4
1.4 Making Predictions With Deep Learning Models 4

1.4.1 Dropout Multi-Layer Perceptron . 4
1.4.2 Convolutional Neural Networks . 5
1.4.3 Structured Data Classification . 8

2 Aims 11

3 Methods 13
3.1 Data Sources . 13

3.1.1 QUADRatlas . 13
3.1.2 UniProt . 13
3.1.3 AlphaFold . 13
3.1.4 Stride . 14

3.2 Libraries for Dataset Creation . 14
3.2.1 Pandas . 14
3.2.2 NumPy . 14

3.3 Neural Network Development . 14
3.3.1 TabPFN . 14
3.3.2 AutoKeras . 14
3.3.3 Keras . 15

3.4 Data Preprocessing . 15
3.4.1 Sampling Methods . 15
3.4.2 One-Hot Encoding . 15
3.4.3 Embedding Layers . 16
3.4.4 Principal Component Analysis . 16

4 Results 17
4.1 Dataset Preparation . 17
4.2 Structured Data Classification . 18
4.3 Image Classification . 23
4.4 Model Comparison . 25

iii

CONTENTS

5 Discussion and Conclusions 27
5.1 Future Perspectives . 28

Bibliography 32

Supplementary Materials 32

iv

Chapter 1

Introduction

1.1 Post-Transcriptional Regulation of Gene Expression

The regulation of gene expression plays a fundamental role in the organization of the synthesis
and localisation of a number of macromolecular structures. Given its importance, it is not
surprising that it is a complex, multi-layered process, taking place at the transcriptional, post-
transcriptional, and translational level [15] (Figure 1.1).

Figure 1.1: Gene expression is controlled at multiple steps. Image taken from [15].

Transcriptional regulation occurs in the nucleus and is responsible for key events such as
the recruitment of the replication machinery and the regulation of its activity. The smooth
running of these steps is directly related to the accessibility of chromatin, as well as depending
on epigenetic modifications, and results in the production of an RNA molecule [15]. After RNA
synthesis, post-transcriptional regulation determines its processing, localisation and propensity
to be translated into protein, effectively decoupling the amount of mRNA and corresponding
protein.

mRNA processing begins during transcription. First, the 5’ end is capped by the addition

1

CHAPTER 1. INTRODUCTION

of a 7-methylguanosine molecule via an unusual 5,5’ triphosphate bond. Next, a poly-A tail is
added to the 3’ end. While the two modifications share the purpose of protecting mRNA from
degradation by exonucleases and facilitating its interaction with proteins (including ribosomes),
polyadenylation also plays a role in the context of RNA diversity. Indeed, the presence of multiple
polyadenylation sites allows the formation of different transcripts which are subject to different
regulatory mechanisms [44].

Another mechanism underlying RNA diversity is alternative splicing: the alternative removal
of introns from pre-mRNA allows the production of multiple isoforms, resulting in the addition
of a further layer of complexity [29].

mRNA stability is directly related to its concentration in the cell, which is mainly deter-
mined by cis-regulatory elements (CREs) encoded within the mRNA sequence itself. These
include secondary structure, binding sites for RNA-binding proteins (RBPs) and microRNAs
[5]. Properly processed mRNAs are exported into the cytoplasm in the form of large export-
competent complexes. Here, the translation process takes place, which consists of initiation,
elongation, termination, and ribosome recycling. Within the mRNA, the AUG at the start of an
open reading frame is identified by initiation factors (IFs), the small ribosomal subunit, and a
special initiator methionine tRNA. The translation process then proceeds in the 5’-3’ direction
until it encounters a stop codon. Recognition of the latter by release factors (RFs) causes the
release of the polypeptide, followed by dissociation of the ribosome from the mRNA [19].

1.1.1 Non-Coding RNAs

A significant fraction of the transcribed human genome does not code for proteins, and pro-
duces instead the so-called non-coding RNAs. At the functional level, it is possible to dis-
tinguish a plethora of non-coding RNAs, including microRNAs, small interfering RNAs, and
piwi-interacting RNAs. Most of these are involved in the regulation of gene expression at several
levels, from epigenetic silencing to post-transcriptional regulation of RNA stability [32].

MicroRNAs (miRNAs) are small, single stranded RNAs (19 to 25 nucleotides) derived
from endogenous primary single stranded transcripts made by RNA polymerase II. They down-
regulate cytoplasmic RNAs through mRNA degradation and translational repression, thus si-
lencing gene expression. Individual miRNAs share sequence complementarity to the 3’ UTR of
multiple target mRNAs, thus fine-tuning entire transcriptional networks, and have been shown to
be involved in the pathogenesis of many allergic diseases including asthma, eosinophilic esophagi-
tis, allergic rhinitis and eczema [28, 27].

Small interfering RNAs (siRNAs) are small, double stranded RNA molecules derived
from long endogenous or exogenous RNA molecules (such as viral RNAs). Although the mech-
anism of action is very similar to that of miRNAs, complementarity with the target is total,
making them ideal candidates for RNA interference, the mechanism by which dsRNA induces
gene silencing by targeting complementary mRNA for degradation [9].

Piwi-interacting RNAs (piRNAs) are generally 25-33 nucleotide long and are derived
from separate piRNA clusters linked to transposon sequences. The synthesis process, which is
not well known, is different from that observed for miRNAs and siRNAs, and the mechanism of
action is based on the interaction with Piwi proteins. PiRNAs are most abundant in germ cells,
although they can also influence gene expression in somatic cells, and are critical in silencing
retrotransposons and other repeating elements [34].

2

1.2. RNA G-QUADRUPLEXES

1.1.2 Cis Elements

The fate of mRNA molecules is often dictated by cis-regulatory elements (CREs), distinctive
secondary structures at the heart of the interaction with other RNA molecules, DNA, or RNA-
binding proteins (RBPs) [11].

Among the most relevant structures are Adenylate/Uridylate-rich elements (ARE), internal
ribosome entry site (IRES) and RNA G-quadruplexes. The former, located in the 3’ untranslated
region (UTR), represent one of the main determinants of mRNA stability. They are binding
sites for proteins that can determine the mRNA rapid decay, thus regulating the amount of
protein synthesised upstream of the translation step [40]. A further control layer is represented
by Internal Ribosomal Entry Sites (IRESs), which allow ribosome recruitment and translation
initiation in a cap-independent manner [1]. Finally, RNA G-quadruplexes are dynamic secondary
structures underlying the interaction of RNA with a series of RBPs, which regulate aspects such
as mRNA half-life and propensity to be translated [31].

1.1.3 RNA-Binding Proteins

RNA-binding proteins (RBPs) are a diverse family of proteins that bind to RNA molecules
through specific RNA-binding domains. These are the functional units responsible for binding
RNA, and often occur in modular arrangements that can coordinate and enhance binding to
RNA [13]. Additionally, RBPs frequently contain intrinsically disordered regions, which operate
themselves as RNA-binding domains [8]. Despite the growing interest in the latter, however, due
to their inherently complex nature their mechanisms of binding, regulation, and physiological
consequences remain poorly understood [22].

RBPs play a variety of roles in post-transcriptional gene regulation, including the control of
mRNA splicing, stability, localization, and translation. They can interact with different regions
of RNA, including 5’ and 3’ UTRs, coding regions, and non-coding RNAs, and can influence
the fates of RNA molecules by affecting their interactions with other proteins or RNA molecules
[13]. Proteins can interact with RNA using the main-chain of any residue and the side-chains
of most residues, and the main interactions are based on Hydrogen bonds and Van der Waals
forces. Not surprisingly, polar amino acids Ser and Asn and positively charged amino acids Lys
and Arg predominate these interaction thanks to the formation of strong salt bridges [8].

1.2 RNA G-Quadruplexes

RNA G-quadruplexes (RG4s) are non-canonical secondary structures in mRNA, widely acknowl-
edged as essential post-transcriptional regulators of gene expression [10]. They are composed by
guanine tetrads held together by Hogsteen hydrogen bonds, and their folding can be controlled
by several factors, including proteins, cations and small molecules [10].

RG4s have been validated as regulators of several biological processes, such as transcription
termination, pre-RNA processing, mRNA translation and maintenance of telomere homeostasis
[31, 12, 10]. Given the fundamental role played by RG4s, it is not surprising that their activity
is heavily regulated. Of particular interest for this work are RG4-binding proteins (RG4BPs),
which interact with RG4s in all their cellular functions and can alternatively stabilize, unwind

3

CHAPTER 1. INTRODUCTION

Figure 1.2: The RG4 structure. (A) Chemical structure and (B) schematic illustration of a G-
tetrad (in purple), composed of four Gs linked together through Hoogsteen H-bonds; (C) example
of intramolecular parallel RG4. Cations coordinated at the center of the tetrad are represented
in gray, while Gs in blue. Image taken from [42].

or prevent their formation [42].

1.3 RG4-Binding Proteins

RG4-binding proteins (RG4BPs) are a class of RNA-binding proteins (RBPs) known for in-
teracting with RG4s and for regulating - directly or indirectly - their dynamics. The analysis
of known RG4BPs has led to the identification of a series of domains, motifs, or unstructured
regions in their binding regions [25]. Among them, the most commonly reported are RRM
(RNA-recognition motif) and RGG (Arginine-Glycine-Glycyne, also known as GAR domain)
motifs (see Figure 1.3).

1.4 Making Predictions With Deep Learning Models

Deep learning is a branch of machine learning based on models that are composed of multiple
layers of interconnected artificial neurons. Each neuron, also called perceptron, is an algorithm
used for supervised learning of binary classifiers. In short, a perceptron (see Figure 1.4) takes
input values, multiplies them by weights, adds them together and applies an activation function to
the weighted sum. The output is then compared to the actual value, and the weights are updated
in order to reduce the loss. Due to their nature, deep learning models are particularly good for
pattern recognition tasks, being able to learn nonlinear and complex relationships between input
and output data.

1.4.1 Dropout Multi-Layer Perceptron

A multi-layer perceptron (MLP) is a type of feed-forward neural network that consists of multiple
layers of nodes, with each layer fully connected to the previous one (see Figure 1.5). While being
structure-agnostic prevents MLPs from making spurious assumptions about the input, this very
same feature also exposes them to issues such as overfitting. In order to prevent this problem,
dropout regularization is often used. During training, some layer outputs are randomly ignored or
”dropped out”, making the training process noisy. As a consequence, the network is encouraged
to learn a sparse representation [41].

4

1.4. MAKING PREDICTIONS WITH DEEP LEARNING MODELS

Figure 1.3: (A) Different possibilities of RG4–RG4BP interactions. Unfolded RNA folds into an
RG4 with the help of RG4BP, or the latter can interact with pre-folded RG4, potentially resulting
in one of the following consequences: stabilization of the RG4 or melting of RG4 to transit into
an alternate structure [20] or a non-structured form [38], or recruitment of other binding factors
to further stabilize the RG4 [2]. (B, C) Classification of reported proteins composition based on
their loosely defined domain and motif compositions. Image adapted from [25].

1.4.2 Convolutional Neural Networks

At the base of convolutional neural networks (CNNs) is the assumption that the inputs are im-
ages. CNNs use a process known as convolution to extract features from input images, applying
filters in order to highlight important characteristics such as edges, corners, and textures. CNNs
typically consist of three layers: a convolutional layer, a pooling layer, and a dense layer.

The convolutional layer is an essential block in a CNN. Initially, a collection of kernels - small
matrices of numerical values - is created. During the forward pass, the filter slides over the image,
pixel by pixel. At each position, the dot product between the kernel and the corresponding pixels
in the input image is performed, which results in a single value. The output values are placed in
the corresponding position of a new matrix, called a feature map. These steps are summarised
in Figure 1.6. The advantage of a convolution layer over trivial dense layers is that the former
is provided with sparse interaction, which both reduces the memory requirement of the model
and improves its statistical efficiency. Due to parameters sharing, the layers of a CNN also have
the attribute of equivariance to translation - that is, a change in the input will be reflected
in the same way in the output [14]. Non-linear layers are frequently included right after the
convolutional layer in order to add non-linearity to the activation map.

5

CHAPTER 1. INTRODUCTION

xn

x2

x1

b

∑
wn

w2

w1

w0

inputs

weights

Figure 1.4: Graphic representation of a perceptron.

dropout

×

×

×

×
×

×

×

Figure 1.5: Dropout Neural Network Model. Left: A fully connected neural network with 2
hidden layers. Right: An example of a thinned network produced by applying dropout to the
network on the left. Crossed units have been dropped. Image adapted from [36].

The aim of a pooling layer is to reduce the spatial dimensions (width and height) of the
feature maps produced by the previous convolutional layer. This reduction can help control
overfitting, reduce the number of parameters in the model, and improve overall computational
efficiency. Pooling works by dividing the feature map into non-overlapping regions, or pools, and
computing a summary statistic for each pool, such as the maximum (max pooling) or average
(average pooling) value. The size of the pooling region, as well as the stride (the number of
pixels by which the kernel is shifted), determine how much the spatial dimensions of the feature
map are reduced. The pooling layer operates independently on each feature map produced by
the previous convolutional layer. By reducing the spatial dimensions, pooling helps capture the
presence of features in different regions of the image, rather than their precise location. This
makes the model invariant to small translations of the input. In other words, it becomes more
robust to changes in the position of features within the image.

6

1.4. MAKING PREDICTIONS WITH DEEP LEARNING MODELS

Figure 1.6: An example of 2-D convolution. Image taken from [14].

Figure 1.7: Illustration of Max Pooling and Average Pooling. Image taken from [48].

After the pooling layer, the input is flattened (turned into a column vector) and fed to a
regular neural network consisting of one or more dense layers to perform classification. This last
step allows to combine all of the learned features together in order to make a prediction about
the input image.

7

CHAPTER 1. INTRODUCTION

1.4.3 Structured Data Classification

Structured data classification refers to the process of automatically assigning pre-defined labels
to a dataset containing structured data. The latter is typically organized in a tabular format
(e.g., CSV, Excel, etc.), with rows representing individual samples and columns representing
different features. Structured data classification is typically performed using machine learning
algorithms, such as decision trees, random forests, or deep neural networks, which learn patterns
in the data and use them to make predictions about the label of new observations. The process
of structured data classification usually involves several steps, including data cleaning, feature
engineering, model selection, training and evaluation, and hyperparameter tuning.

Data cleaning is the most important step in machine learning. It is the process of preparing
data during which incorrect, incomplete, duplicated, or incorrectly formatted data are removed
or modified. Intuitively, this step becomes even more important when working with data from
multiple sources.

Feature engineering is the process by which the most relevant features for the task are se-
lected or created. In other words, it is the pre-processing step of machine learning which extracts
features from raw data. Feature engineering encompasses one or more of the following steps: (1)
feature extraction, whose objective is to find the most useful variables to be used within a predic-
tive model; (2) feature transformation, which includes practices such as standardisation and data
encoding and is aimed at transforming the input data into a more suitable form for the model;
(3) feature selection, by which the subset of the most relevant features is selected by discarding
redundant, irrelevant or noisy features.

Model selection involves choosing the most appropriate algorithm (or combination of algo-
rithms) for the task, based on the properties of the data and the desired performance metrics.
Other factors that should be taken into account when choosing a model are maintainability
and model complexity. Intuitively, for equal performance a relatively simple model tends to be
preferable to a complex one.

The next step consists of model training and evaluation, and results in the creation and as-
sessment of a predictive model. Firstly, the data collected must be split into three datasets, as
shown in Figure 1.8: (1) the training set, which is used by the model to learn the weights; (2)
the validation set, whose purpose is to provide an unbiased set in order to assess the model’s
performance during training and prevent it from overfitting; (3) the test set, which consists of
data never seen by the model that are used for its final evaluation.

During training, the network is presented with a set of inputs and the corresponding desired
outputs. The network processes the inputs and produces an output, which is compared to the
desired output to calculate the loss. The weights and biases of the network are then adjusted
based on the loss using an optimization algorithm, such as gradient descent. This process is
repeated over multiple iterations, known as epochs, until the network achieves the desired level
of accuracy on the training data. After every epoch the network’s performance is also evaluated
on the validation set in order to avoid overfitting.

8

1.4. MAKING PREDICTIONS WITH DEEP LEARNING MODELS

Dataset

Training Validation Test

Figure 1.8: Example of dataset splitting.

The model’s performance can be assessed using various metrics. Among the most used for
classification tasks are accuracy, precision, recall and F1-score. Accuracy is defined as follows:

Accuracy =
Number of correct predictions

Total number of predictions
=

TP + TN

TP+ TN+ FP + FN
(1.1)

where TP = True Positives, TN = True Negatives, FP = False Positives and FN = False
Negatives. Despite being an intuitive and easily interpretable evaluation metric, it is not suffi-
cient to describe the full picture when working with an imbalanced dataset - that is, a dataset
with skewed class proportions.
Two more robust metrics are precision and recall, defined in Equation 1.2 and 1.3, respectively.
Although they might appear similar at first sight, they describe different things. In particular,
while precision is aimed at identifying what proportion of positive identifiers is actually cor-
rect, the purpose of recall is to quantify what proportion of actual positives has been correctly
identified.

Precision =
TP

TP + FP
(1.2)

Recall =
TP

TP + FN
(1.3)

Precision and recall are combined in the F1-score, which measures the accuracy of a model
and is defined as the harmonic mean between precision and recall (1.4). Unlike accuracy, the
F1-score gives more relevance to False Negatives and False Positives, thus being preferable when
working with imbalanced datasets.

F1-score =
2

1

precision
· 1

recall

(1.4)

The last step in structured data classification and, more generally, in any classification task, is
hyperparameter tuning. Hyperparameters are tunable parameters set prior to the learning process
that directly affect how well a model performs. In the context of deep learning, some important
hyperparameters are train-test split ratio, learning rate, number of hidden layers, number of units
in each layer, number of epochs, drop-out rate and activation function.

9

CHAPTER 1. INTRODUCTION

10

Chapter 2

Aims

Although the interest in RNA G-quadruplexes is relatively recent, it is becoming increasingly
clear that these elements play a fundamental role in a number of biological processes, including
the control of mRNA processing, stability, and translation. While various approaches for the
prediction and identification of these elements have been developed in the last few years [26],
a less investigated aspect concerns the identification of proteins whose activity influences RG4
dynamics.

Given their extensive involvement in various processes, a better understanding of the fac-
tors regulating RG4 activity would improve our understanding of the dynamics underlying these
processes. With this in mind, the project presented here aims to provide a tool for the identi-
fication of unknown RG4BPs, using a limited number of known features to predict whether a
given protein is capable of binding RG4 motifs.

A further aim of the work - somehow related to the intrinsic nature of the method used -
is to propose an unbiased approach to the study of RG4BPs, which involves investigating the
biological characteristics of the proteins only after they have been computationally identified. In
other words, this approach aims to streamline the study procedure in the laboratory by providing
predictions on possible targets to be later analysed in detail.

11

CHAPTER 2. AIMS

12

Chapter 3

Methods

3.1 Data Sources

3.1.1 QUADRatlas

QUADRatlas [3] is a database of RNAG-quadruplexes (RG4s) and RG4-binding proteins (RG4BPs)
resulting from the joint effort of two laboratories: the Laboratory of RNA Regulatory Networks
at the Department CIBIO (University of Trento), led by Dr. Erik Dassi, and the RNA-binding
proteins and genotoxic stress team at the CRCT (Toulouse), led by Dr. Stefania Millevoi. It in-
cludes experimentally-derived and computationally predicted RG4s in the human transcriptome,
enriched with annotations describing their biological functions and disease associations. All the
proteins representing the set of positives were taken from this database.

3.1.2 UniProt

The Universal Protein Resource (UniProt) [7] is a comprehensive resource for protein sequence
and annotation data. For this work, we relied on the UniProt Knowledgebase (UniProtKB),
containing functional information on proteins with accurate, consistent and rich annotation. In
particular, we used UniProtKB/Swiss-Prot, which contains manually-annotated records with
information extracted from the literature and curator-evaluated computational analyses. The
code used to programmatically access the database can be found in Supplementary Materials
5.1.

3.1.3 AlphaFold

AlphaFold [24, 47] is a deep learning-based protein 3D structure prediction system developed
by researchers at the University of Washington and the European Molecular Biology Laboratory
(EMBL). It has demonstrated state-of-the-art performance, and has been used to predict the
structures of thousands of proteins in a wide range of organisms, including Human. From the
database it is possible to download the PDB (Protein Data Bank) files of the entire proteome of
the organism of interest, which provide high-quality, experimentally-validated protein structure
predictions.

13

CHAPTER 3. METHODS

3.1.4 Stride

STRIDE [18] is a program for protein secondary structure elements assignment from atomic
resolution protein structures. It works by analyzing the backbone dihedral angles of the protein
and identifying patterns that correspond to different secondary structure elements, such as alpha
helices, beta strands, and turns. The program uses a sliding window approach to assign secondary
structure elements, where a window of a fixed length is moved along the protein chain and the
secondary structure element is assigned based on the dihedral angles within the window. The
program can be run from command line as follows:

stride input.pdb -foutput.txt

Given the large number of files considered in this work, the process was automated as reported
in Supplementary Materials 5.2.

3.2 Libraries for Dataset Creation

3.2.1 Pandas

Pandas [43] is a popular data manipulation and analysis library for Python. It provides a variety
of data structures for working with tabular and time-series data, as well as tools for data cleaning,
exploration and visualization. Among the key functionalities provided by pandas are reading and
writing data from various sources (CSV, Excel, etc.), filtering, selecting and manipulating data
based on conditions, joining, merging and reshaping datasets, and grouping and aggregating data
based on different criteria.

3.2.2 NumPy

NumPy [16] is a Python library for numerical computing. It provides support for large, multi-
dimensional arrays and matrices, along with a large collection of high-level mathematical func-
tions to operate on these arrays. NumPy is a powerful way to work with arrays and matrices,
providing efficient memory management and optimized routines for numerical computations.

3.3 Neural Network Development

3.3.1 TabPFN

TabPFN [21] is an offline-trained Transformer algorithm that can perform supervised classifica-
tion for small tabular datasets extremely rapidly. The model does not require hyperparameter
tuning, and shows competitive performance compared to state-of-the-art classification methods.
Although it shows inefficiencies related to dataset size, data type and missing values, it is an
excellent tool for quick and relatively inexpensive preliminary predictions.

3.3.2 AutoKeras

AutoKeras [23] is an open-source Python library for automated machine learning (AutoML).
It is built on top of Keras, and provides a high-level API for training deep learning models
with minimal input from the user. AutoKeras uses a technique called neural architecture search
(NAS) to automatically search for the optimal architecture of a deep learning model for a given
task. It includes various pre-defined search spaces for different types of models, such as image
classification, regression, and text classification, and can also generate custom architectures.

14

3.4. DATA PREPROCESSING

3.3.3 Keras

Keras [6] is a high-level deep learning API for Python, designed to simplify the process of
building neural networks. It provides a user-friendly interface to create and train deep learning
models, hiding the complexity of the underlying mathematical computations. Built on top of
TensorFlow [30], Keras can run on both CPUs and GPUs. It supports a wide range of neural
network architectures, including feed-forward networks, convolutional networks, and recurrent
networks.

3.4 Data Preprocessing

3.4.1 Sampling Methods

Due to the nature of the dataset, an initial problem that was encountered consisted in the
presence of underrepresented data and a severe class distribution skew. In order to solve this
issue, we applied sampling methods to modify the imbalanced dataset and provide a balanced
distribution [17]. As a result, we were able to use accuracy as the evaluation metric for our model.

Initially, we randomly downsampled the negatives, reducing the disparity between the two
classes. We then oversampled the positives by randomly duplicating samples until we obtained
a balanced dataset (see Supplementary Materials 5.3). In order to evaluate the performance of
the model and reduce the risk of overfitting, cross-validation was used.

3.4.2 One-Hot Encoding

While some machine learning algorithms, such as decision trees, can work directly with categorical
data, neural networks require data to be numeric. As a consequence, techniques are needed to
map categorical data to integers. With one-hot encoding, each categorical value is converted into
a new categorical column, and at each new column is assigned a binary value of 0 or 1. Each
categorical value is therefore represented as a binary vector where all elements are 0 except for
the index corresponding to the actual value, which is set to 1. An example of the process is
provided in Figure 3.1.

Figure 3.1: Example of one-hot encoding.

Among the advantages of one-hot encoding are the fact that the result is binary and that all
the elements are in an orthogonal vector space. However, the feature space can blow up quickly
for high cardinality, which leads to facing the curse of dimensionality.

15

CHAPTER 3. METHODS

3.4.3 Embedding Layers

Embedding layers can be used to learn a dense representation of categorical variables. While
with one-hot encoding we obtain a dummy feature for each variable, embedding layer enables us
to convert each entry into a fixed length vector of defined size. The dimensionality of the vector
is a hyperparameter that can be tuned based on the size of the vocabulary and the complexity of
the task. Since the resultant vector has real values instead of just 0’s and 1’s, it is said to be dense.

During training, the embedded layer takes as input a sequence of categorical variables (e.g.
a sequence of words in a sentence) and maps each category to its learned vector representation.
The resulting output is a sequence of dense vectors that can be used as input to the subsequent
layers of the neural network.

3.4.4 Principal Component Analysis

Principal Component Analysis (PCA) [39] is an orthogonal linear transformation technique aimed
at transforming a high-dimensional dataset into a lower-dimensional representation while pre-
serving the most important information. The main idea behind PCA is to find a new set of
uncorrelated variables, called principal components, that capture the maximum amount of vari-
ation in the original data.

The process of PCA involves several steps. First, the data is standardized to have zero mean
and unit variance. Then, the covariance matrix is computed to capture the relationships between
different variables. The eigenvalues and eigenvectors of the covariance matrix are calculated,
with the latter representing the directions in which the data varies the most, and the former the
magnitude of the related variation. The eigenvectors corresponding to the largest eigenvalues
are selected as the principal components, and are used to form a new coordinate system in which
the data is projected. By selecting a subset of the principal components, it is thus possible to
reduce the dimensionality of the data while retaining a significant amount of their variance.

16

Chapter 4

Results

The following sections present the steps followed and the results obtained in this work. Given
the extremely important biological role played by RG4s, a key aspect to better understand their
functioning revolves around their regulation. To this end, we adopted a computational approach
aimed at identifying new potential RG4BPs, using a deep learning approach to extrapolate
features useful for their identification.

4.1 Dataset Preparation

To begin with, we created a dataset containing information on the entire human proteome so
that we could then proceed with the training of various models. To do so, we first performed a
bulk download from UniProt (see Supplementary Materials 5.1), obtaining a dataset with pro-
tein name, UniProt ID, protein length and amino acid sequence. We then used the information
from QUADRatlas [3] to add the target feature of being an RG4-binding protein to each of the
UniProt proteins. Next, we processed the information regarding domains and regions. Since the
latter, although extremely numerous, had few representatives per category (median of 2 proteins
per regions type), we decided to only consider the presence of disordered regions. Domains were
instead processed in the following way: first, we grouped domains belonging to the same family
under a single ID; then, each ID was associated with a number to convert the positional infor-
mation from UniProt into strings containing sequences of numbers corresponding to the various
domains. The process is depicted in Figure 4.1.

After adding the information on domains and regions, we proceeded with that concerning the
protein secondary structure. To do this, we first downloaded the PDB-format structure of the
entire human proteome as predicted by AlphaFold [24, 47]. We then processed these files (see
Supplementary Materials 5.2) to obtain strings representing the secondary structure, which we
added to the previously constructed dataset.

At this point, we removed proteins already known to be RBPs but labelled as non-RG4BPs
from the dataset (the RBPs lists were obtained merging results from [4, 33, 37, 13, 35, 46, 45]);
since many RG4BPs are also RBPs, removing them reduced the false negative rate within the
starting dataset, thus improving the chances of building accurate models. With this last step, we
obtained the starting dataset; subsequent modifications were different depending on the model
to be trained.

17

CHAPTER 4. RESULTS

{Domain Name: ”3..10”}

Domain to domain family

{Domain Family Name: ”3..10”}

Domain family to numeric ID

{1: ”3..10”}

Conversion to sequence

0011111111

Figure 4.1: Domain processing.

4.2 Structured Data Classification

For this approach, we processed the dataset in order to obtain a tabular format file containing
information on a number of features for each sample (protein). In particular, through a feature
engineering process we obtained the following attributes:

• Protein length;

• Percentage of disordered structure;

• The IDs of the first two domains. The threshold of domains considered was chosen according
to the statistic in the table below:

Number of domains Number of proteins

1 4160
2 770
3 176
4 50
5 3
6 1
7 1

18

4.2. STRUCTURED DATA CLASSIFICATION

• The percentage of the protein characterised by a certain secondary structure element. More
precisely, we added a column for each of the following one-letter secondary structure codes
obtained from stride [18]:

Symbol Secondary structure element

H α-helix
G 310 helix
I π-helix
E Extended conformation

B or b Isolated bridge
T Turn
C Coil (none of the above

• Label, i.e. whether the protein is known to be an RG4BP or not.

As a first approach, we built a predictive model using TabPFN [21]. Since this can handle
datasets containing at most 1000 samples, we built a subdataset by randomly extracting 500
positives and 500 negatives from the whole dataset. We then trained the model on the training
dataset (75% of the whole dataset) and tested the performance on the test dataset (25% of the
whole dataset), obtaining an accuracy of 0.696 and the confusion matrix shown in Figure 4.2.

0 1

0
1

True neg
88

False pos
37

False neg
39

True pos
86

40

50

60

70

80

Figure 4.2: Confusion ma-
trix representing the best
prediction obtained with
the TabPFN model.
Accuracy: 0.696.

Given the promising results, we decided to proceed using AutoKeras [23] to automate the
process of building and training a model. AutoKeras allows to automatically test an array of ar-
chitectures and hyper-parameters values, thereby giving us indications regarding the best choices
of these values for our problem (see Supplementary Materials, Figure 5.1). We then reproduced
the obtained model in Keras [6] in order to perform a further fine-tuning of the parameters.
To assess the impact of different feature processing methods on the performance of the model,
we decided to study two separate cases. In the first case (model A), we processed the categori-
cal variables by one-hot encoding, while in the second one (model B) we used an embedding layer.

Since embedding requires the size of the output vocabulary, we performed a PCA on the
protein domains (see Figure 4.3), ending up choosing a vector size of 20.

19

CHAPTER 4. RESULTS

0 10 20 30 40 50 60
Number of components

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cu
m

ul
at

iv
e

ex
pl

ai
ne

d
va

ria
nc

e

Figure 4.3: Results of
a Principal Component
Analysis (PCA) applied to
protein domains. 20 com-
ponents are enough to ex-
plain 88 % of the variance.

We then built the two models, obtaining the architectures represented in Figure 5.2 and
Listing 5.4 of the Supplementary Materials. We first proceeded with the training and evaluation
phases of the two neural networks, obtaining the results shown in Table 4.1 and Figure 4.4.

Model A Model B
Accuracy Loss Accuracy Loss
0.86 0.537 0.826 0.528

Table 4.1: Performance of models A and B.

Then, once the training of the two models was completed, we used them to make a prediction
on the complete dataset, i.e. the one also containing the proteins already known to be RBPs.
The results are shown in the confusion matrices depicted in Figure 4.5 and in the distribution
histograms reported in Figure 4.6. Both models are characterised by a certain difficulty in
minimising the validation loss, which is not too surprising given the nature of the dataset. An
interesting difference between the two models concerns the accuracy, which is used as the main
evaluation metric during the training phase: while in model A we observe a certain discrepancy
between training and validation accuracy (consistent with the high validation loss), in model B
this discrepancy is small, indicating a lower degree of overfitting. However, overall, Model A
performs slightly better than model B, with an accuracy of 0.86 (compared to 0.826 for model
B).

20

4.2. STRUCTURED DATA CLASSIFICATION

0 25 50 75 100

0.65

0.70

0.75

0.80

0.85

0.90

0.95
Training and validation accuracy

Training acc
Validation acc

0 25 50 75 100

0.2

0.3

0.4

0.5

0.6

Training and validation loss

Training loss
Validation loss

0 25 50 75 100

0.65

0.70

0.75

0.80

0.85

Training and validation accuracy

Training acc
Validation acc

0 25 50 75 100

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65
Training and validation loss

Training loss
Validation loss

Figure 4.4: Top: training process of model A. Bottom: training process of model B.

Since the aim of the work is to find potential RG4BPs that are not yet known, we only kept
the false positives (FP) and merged those predicted by the two models in a single array. In other
words, we built a dictionary whose keys were the IDs of the false positives, and whose values were
a list containing a combination of the numbers 1 and 2 depending on whether the false positive
in question was predicted by model A, model B or both. Since false positives were present in a
large number, we explored different thresholds to adjust the prediction outcomes. Specifically,
we applied the thresholds shown in Table 4.2 in order to identify a suitable threshold that would
reduce the number of positive predictions while maintaining the confidence level of the model’s
outputs.

21

CHAPTER 4. RESULTS

0 1

0
1

True neg
14701

False pos
4335

False neg
44

True pos
1051

2000

4000

6000

8000

10000

12000

14000

0 1

0
1

True neg
14520

False pos
4516

False neg
138

True pos
957

2000

4000

6000

8000

10000

12000

14000

Figure 4.5: Left: confusion matrix of the prediction performed by model A on the full dataset.
Accuracy: 0.86. Right: confusion matrix of the prediction performed by model B on the same
dataset. Accuracy: 0.826.

0.0 0.2 0.4 0.6 0.8 1.0
Prediction value

0

2000

4000

6000

8000

10000

12000

Nu
m

be
r o

f p
re

di
ct

io
ns

Distribution of all predictions

0.5 0.6 0.7 0.8 0.9 1.0
Prediction value

0

250

500

750

1000

1250

1500

1750

2000

Distribution of positive predictions

0.0 0.2 0.4 0.6 0.8 1.0
Prediction value

0

1000

2000

3000

4000

5000

6000

7000

Nu
m

be
r o

f p
re

di
ct

io
ns

Distribution of all predictions

0.5 0.6 0.7 0.8 0.9 1.0
Prediction value

0

200

400

600

800

1000

Distribution of positive predictions

Figure 4.6: Top: histogram showing the distributions of all predictions (left) and the positive
ones (right) for model A. Bottom: histogram showing the distributions of all predictions (left)
and the positive ones (right) for model B.

22

4.3. IMAGE CLASSIFICATION

Treshold # FP
1.00 218
0.95 1586
0.90 2066
0.75 3251

Table 4.2: Common false positives predicted by models A and B at different thresholds.

4.3 Image Classification

For this second approach, we started from the idea that an image is de facto a two-dimensional
array of integers, and looked for a way to process our dataset in order to convert it into a data
structure formally analogous to an image. To do this, we first created two directories in which to
store data for positives and negatives examples separately. We then processed the dataset in such
a way as to save the information relative to each sample in the form of a numpy array. Specifically,
each array consists of four rows, representing sequence, secondary structure, domains and regions
respectively, and as many columns as are amino acids composing the protein in question. The
following criterion was followed for the representation of the four features:

• The presence of a disordered region was indicated with a number of ’1’s equal to its exten-
sion in amino acids, while its absence was similarly indicated with ’0’s;

• Domains were represented similarly to regions, but using the ID of the corresponding
domain family (numbers 1 to 799) as identifier;

• The single-letter codes representing amino acids were replaced with the numbers ranging
from 800 to 819;

• The letters representing secondary structure elements were replaced with the numbers
ranging from 819 to 825.

Although the use of large numbers places a computational burden on the training of the mod-
els, we opted for this option in order to avoid the introduction of artifacts due to the presence
of spurious patterns. Since most image classification models require images of the same size,
we padded each array with zeroes in order to obtain homogeneity along both dimensions. Once
the data processing phase was completed, we used AutoKeras to build an image classification
model (model C), thereby obtaining the architecture represented in Figure 5.3 of Supplementary
Materials.

We then performed a prediction on the entire dataset, obtaining the result represented in
Figure 4.7. The distribution of the predictions is represented in Figure 4.8. It should be taken into
account that for time reasons it was not possible to use Keras to optimise the image classification
model as was done for the structured data classification models. This absence of the fine-tuning
process explains, at least in part, the relatively poor performance of the model.

23

CHAPTER 4. RESULTS

0 1

0
1

True neg
12302

False pos
6734

False neg
699

True pos
396

2000

4000

6000

8000

10000

12000 Figure 4.7: Confusion ma-
trix representing the best
prediction obtained with
the AutoKeras model.
Accuracy: 0.63.

0.0 0.2 0.4 0.6 0.8 1.0
Prediction value

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f p
re

di
ct

io
ns

Distribution of all predictions

0.5 0.6 0.7 0.8 0.9 1.0
Prediction value

0

200

400

600

800

1000

1200
Distribution of positive predictions

Figure 4.8: Histogram showing the distributions of all predictions (left) and the positive ones
(right) obtained with the image classification model.

Similar to what we did with models A and B, we then calculated the number of false positives
at various thresholds, obtaining the results shown in Table 4.3.

Treshold # FP
1.00 0
0.95 679
0.90 879
0.75 2612

Table 4.3: False positives predicted by model C at different thresholds.

24

4.4. MODEL COMPARISON

4.4 Model Comparison

Once we obtained the predictions with the three models (A, B and C), we analysed the fraction
of common genes at different thresholds, as represented in Figure 4.9. Clearly, as the threshold
increases, the contribution of the image classification model becomes progressively less relevant,
which is consistent with the distribution of predictions represented in Figure 4.8. On the contrary,
the predictions of models A and B appear to be much more overlapping, with 31 common
predictions at the 100% threshold.

1118 761935

2164

190 109
133

Model A Model B

Model C

Venn diagram for predictions from the three models
 with threshold at 75%

992 403582

785

41
2719

Model A
Model B

Model C

Venn diagram for predictions from the three models
 with threshold at 90%

808 273451

622

29
1411

Model A
Model B

Model C

Venn diagram for predictions from the three models
 with threshold at 95%

161 2631

Model A

Model B

Venn diagram for predictions from the three models
 with threshold at 100%

Figure 4.9: Venn diagrams representing the gene fractions common to the three models at
different thresholds. Models A and B are the structured data classifier using one-hot encoding
and embedding, respectively; model C is the image classification model.

25

CHAPTER 4. RESULTS

26

Chapter 5

Discussion and Conclusions

In this work we presented a computational approach to the identification of RNA G-quadruplex-
binding proteins (RG4BPs), with the aim of supporting our understanding of the regulation of
these cis elements by guiding experimental analyses. We first constructed a starting dataset
by combining information from UniProt [7], then we integrated it with those derived from
QUADRatlas [3] in order to have a pool of true positive proteins (i.e. proteins already known
to be true RG4 binders). After a data processing phase, we started the construction of the
classification models, following two main paths: structured data and image classification.

In the first approach we identified a number of features, including protein sequence, structural
composition and presence of domains and regions, and saved the data in tabular form using pan-
das DataFrames [43]. We then used over- and undersampling techniques to reduce imbalances
in the dataset and thus facilitate the training phase. Indeed, imbalance was one of the biggest
limits of our dataset, as known positives were only around 1100 out of 20000 samples. We then
removed proteins already known to be RBPs from the negatives; as RG4BPs are a subclass of
RBPs, removing them reduced the number of false negatives. Then, we started the model build-
ing phase: after obtaining parameter estimates by means of AutoKeras [23], we moved on to
their fine-tuning using Keras [6], finally obtaining models A and B with the performances shown
in Table 4.1. Although the accuracy of the two models is rather high (see Figure 4.5), in both
cases considerable difficulties in minimising the cost function were encountered, which resulted
in non-optimised models. This problem, although partly related to the nature of the dataset,
could certainly be mitigated through a more precise fine-tuning process. It is also possible that
the features selected for training do not contain sufficient information to accurately discriminate
between positives and negatives, hence the use of new features processed in a different way could
be useful. Nevertheless, the fact that the two models resulted in 31 common predictions using
a 100% threshold suggests that they were able to recognise a set of key features common to
RG4BPs, which may make it worth investing some time in an optimisation process.

In parallel, we followed an image classification approach. Starting from the same dataset,
we processed the data to obtain a formally image-like representation, i.e. a two-dimensional
array of integers. In this case, we considered amino acid sequence, secondary structure, domains
and regions, thus representing each protein with an array of size 4 × l, where l is the number
of amino acids. Since proteins differ in length, we obtained a set of arrays heterogeneous for
the second dimension. We therefore introduced a further processing step and padded all the
matrices with zeros, thus obtaining a dataset ready to be fed into a convolutional neural network

27

CHAPTER 5. DISCUSSION AND CONCLUSIONS

model. Although there are other techniques for handling inconsistencies of this type, we opted
for padding with zeros because of its simplicity, even though we are aware that such an operation
could introduce artefacts. Having done so, we used AutoKeras to construct a neural network,
resulting in the C model with the performance shown in Figure 4.7. Clearly, the model obtained
is rather poorly performing, with an accuracy slightly above 60%. The underlying reason for
this result is to be found within several factors. Firstly, for reasons of time we were not able
to carry out the fine-tuning process via Keras followed for the other two models, de facto using
the non-optimised hyperparameters obtained via AutoKeras. Secondly, the processing of the
dataset was rather heavy, and may have resulted in the introduction of spurious patterns. This
last aspect could be improved through the use of alternative processing techniques, so that the
preprocessing phase would impact the original data as little as possible.

We finally compared the predictions of the three models, obtaining the results shown in Figure
4.9. Despite the sub-optimal performance of model C, the intersection of the results of models A
and B allowed the identification of a small number of proteins potentially capable of binding RG4
motifs. Two of these, DDX55 and CPEB4, are known to be RBPs and their binding sites are
frequently overlapping with RG4 elements (> 50%). This suggests that the models are actually
able to find patterns useful for identifying novel RG4BPs.

5.1 Future Perspectives

Despite the rather promising results, there certainly remains room for improvement. First of all,
the image classification model obtained with AutoKeras was not subjected to the same fine-tuning
procedure via Keras as the other two, which explains at least in part the poor performance. An
improvement of the hyper-parameters tuning would probably result in an increase in performance,
with a consequently higher contribution to the predictions obtained by means of models A and
B. Secondly, in order to overcome the problems arising from the high unbalance of the dataset,
we used over- and undersampling techniques which, although optimised, may have introduced a
bias within the models. A potential alternative route consists of using synthetic data, so as to
increase the number of true positives and thus be able to reduce the problem to its root. Finally,
it must be taken into account that the results are purely the product of predictions and need
to be confirmed experimentally. In this regard, laboratory validation of the two most promising
predictions, i.e. DDX55 and CPEB4, is currently underway by means of affinity chromatography
assays with synthetic RG4 sequences.

28

Bibliography

[1] Chiara Ambrosini, Francesca Garilli, and Alessandro Quattrone. “Chapter Thirteen - Re-
programming translation for gene therapy”. In: Curing Genetic Diseases Through Genome
Reprogramming. Ed. by Gianluca Petris. Vol. 182. Progress in Molecular Biology and Trans-
lational Science. Academic Press, 2021, pp. 439–476. doi: https://doi.org/10.1016/bs.
pmbts.2021.01.028. url: https://www.sciencedirect.com/science/article/pii/
S1877117321000399.

[2] Debmalya Bhattacharyya, Gayan Mirihana Arachchilage, and Soumitra Basu. “Metal Cations
in G-Quadruplex Folding and Stability”. In: Frontiers in Chemistry 4 (Sept. 2016). doi:
10.3389/fchem.2016.00038. url: https://doi.org/10.3389/fchem.2016.00038.

[3] Sébastien Bourdon et al. “QUADRatlas: the RNA G-quadruplex and RG4-binding proteins
database”. In: Nucleic Acids Research 51.D1 (Sept. 2022), pp. D240–D247. doi: 10.1093/
nar/gkac782. url: https://doi.org/10.1093/nar/gkac782.

[4] Alfredo Castello et al. “Identification of RNA-binding domains of RNA-binding proteins
in cultured cells on a system-wide scale with RBDmap”. In: Nature Protocols 12.12 (Nov.
2017), pp. 2447–2464. doi: 10.1038/nprot.2017.106. url: https://doi.org/10.1038/
nprot.2017.106.

[5] Jun Cheng et al. “iCis/i-regulatory elements explain most of the mRNA stability variation
across genes in yeast”. In: RNA 23.11 (Aug. 2017), pp. 1648–1659. doi: 10.1261/rna.
062224.117. url: https://doi.org/10.1261/rna.062224.117.

[6] François Chollet et al. Keras. https://keras.io. 2015.

[7] The UniProt Consortium. “UniProt: the Universal Protein Knowledgebase in 2023”. In:
Nucleic Acids Research 51.D1 (Nov. 2022), pp. D523–D531. issn: 0305-1048. doi: 10.
1093/nar/gkac1052. eprint: https://academic.oup.com/nar/article-pdf/51/D1/D523/
48441158/gkac1052.pdf. url: https://doi.org/10.1093/nar/gkac1052.

[8] Meredith Corley, Margaret C. Burns, and Gene W. Yeo. “How RNA-Binding Proteins
Interact with RNA: Molecules and Mechanisms”. In: Molecular Cell 78.1 (Apr. 2020),
pp. 9–29. doi: 10.1016/j.molcel.2020.03.011. url: https://doi.org/10.1016/j.
molcel.2020.03.011.

[9] Hassan Dana et al. “Molecular mechanisms and biological functions of siRNA”. en. In: Int.
J. Biomed. Sci. 13.2 (June 2017), pp. 48–57.

[10] Lëıla Dumas et al. “G-Quadruplexes in RNA Biology: Recent Advances and Future Direc-
tions”. In: Trends in Biochemical Sciences 46.4 (Apr. 2021), pp. 270–283. doi: 10.1016/
j.tibs.2020.11.001. url: https://doi.org/10.1016/j.tibs.2020.11.001.

29

https://doi.org/https://doi.org/10.1016/bs.pmbts.2021.01.028
https://doi.org/https://doi.org/10.1016/bs.pmbts.2021.01.028
https://www.sciencedirect.com/science/article/pii/S1877117321000399
https://www.sciencedirect.com/science/article/pii/S1877117321000399
https://doi.org/10.3389/fchem.2016.00038
https://doi.org/10.3389/fchem.2016.00038
https://doi.org/10.1093/nar/gkac782
https://doi.org/10.1093/nar/gkac782
https://doi.org/10.1093/nar/gkac782
https://doi.org/10.1038/nprot.2017.106
https://doi.org/10.1038/nprot.2017.106
https://doi.org/10.1038/nprot.2017.106
https://doi.org/10.1261/rna.062224.117
https://doi.org/10.1261/rna.062224.117
https://doi.org/10.1261/rna.062224.117
https://keras.io
https://doi.org/10.1093/nar/gkac1052
https://doi.org/10.1093/nar/gkac1052
https://academic.oup.com/nar/article-pdf/51/D1/D523/48441158/gkac1052.pdf
https://academic.oup.com/nar/article-pdf/51/D1/D523/48441158/gkac1052.pdf
https://doi.org/10.1093/nar/gkac1052
https://doi.org/10.1016/j.molcel.2020.03.011
https://doi.org/10.1016/j.molcel.2020.03.011
https://doi.org/10.1016/j.molcel.2020.03.011
https://doi.org/10.1016/j.tibs.2020.11.001
https://doi.org/10.1016/j.tibs.2020.11.001
https://doi.org/10.1016/j.tibs.2020.11.001

BIBLIOGRAPHY

[11] Irina A. Elcheva and Vladimir S. Spiegelman. “The Role of cis- and trans-Acting RNA
Regulatory Elements in Leukemia”. In: Cancers 12.12 (Dec. 2020), p. 3854. doi: 10.3390/
cancers12123854. url: https://doi.org/10.3390/cancers12123854.

[12] Marta M. Fay, Shawn M. Lyons, and Pavel Ivanov. “RNA G-Quadruplexes in Biology: Prin-
ciples and Molecular Mechanisms”. In: Journal of Molecular Biology 429.14 (July 2017),
pp. 2127–2147. doi: 10.1016/j.jmb.2017.05.017. url: https://doi.org/10.1016/j.jmb.
2017.05.017.

[13] Stefanie Gerstberger, Markus Hafner, and Thomas Tuschl. “A census of human RNA-
binding proteins”. In: Nature Reviews Genetics 15.12 (Nov. 2014), pp. 829–845. doi: 10.
1038/nrg3813. url: https://doi.org/10.1038/nrg3813.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
url: %5Curl%7Bhttp://www.deeplearningbook.org%7D.

[15] R. E. Halbeisen et al. “Post-transcriptional gene regulation: From genome-wide studies
to principles”. In: Cellular and Molecular Life Sciences 65.5 (Nov. 2007). doi: 10.1007/
s00018-007-7447-6. url: https://doi.org/10.1007/s00018-007-7447-6.

[16] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825 (Sept.
2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https://doi.org/10.1038/
s41586-020-2649-2.

[17] Haibo He and E.A. Garcia. “Learning from Imbalanced Data”. In: Knowledge and Data
Engineering, IEEE Transactions on 21 (Oct. 2009), pp. 1263–1284. doi: 10.1109/TKDE.
2008.239.

[18] M. Heinig and D. Frishman. “STRIDE: a web server for secondary structure assignment
from known atomic coordinates of proteins”. In: Nucleic Acids Research 32.Web Server
(July 2004), W500–W502. doi: 10.1093/nar/gkh429. url: https://doi.org/10.1093/
nar/gkh429.

[19] Christopher U.T. Hellen. “Translation Termination and Ribosome Recycling in Eukary-
otes”. In: Cold Spring Harbor Perspectives in Biology 10.10 (May 2018), a032656. doi:
10.1101/cshperspect.a032656. url: https://doi.org/10.1101/cshperspect.a032656.

[20] Eric Henderson et al. “Telomeric DNA oligonucleotides form novel intramolecular struc-
tures containing guanine·guanine base pairs”. In: Cell 51.6 (Dec. 1987), pp. 899–908. doi:
10.1016/0092-8674(87)90577-0. url: https://doi.org/10.1016/0092-8674(87)90577-0.

[21] Noah Hollmann et al. TabPFN: A Transformer That Solves Small Tabular Classification
Problems in a Second. 2022. doi: 10.48550/ARXIV.2207.01848. url: https://arxiv.org/
abs/2207.01848.

[22] Aino I. Järvelin et al. “The new (dis)order in RNA regulation”. In: Cell Communication
and Signaling 14.1 (Apr. 2016). doi: 10.1186/s12964-016-0132-3. url: https://doi.
org/10.1186/s12964-016-0132-3.

[23] Haifeng Jin et al. “AutoKeras: An AutoML Library for Deep Learning”. In: Journal of
Machine Learning Research 24.6 (2023), pp. 1–6. url: http://jmlr.org/papers/v24/20-
1355.html.

[24] John Jumper et al. “Highly accurate protein structure prediction with AlphaFold”. In:
Nature 596.7873 (July 2021), pp. 583–589. doi: 10.1038/s41586- 021- 03819- 2. url:
https://doi.org/10.1038/s41586-021-03819-2.

30

https://doi.org/10.3390/cancers12123854
https://doi.org/10.3390/cancers12123854
https://doi.org/10.3390/cancers12123854
https://doi.org/10.1016/j.jmb.2017.05.017
https://doi.org/10.1016/j.jmb.2017.05.017
https://doi.org/10.1016/j.jmb.2017.05.017
https://doi.org/10.1038/nrg3813
https://doi.org/10.1038/nrg3813
https://doi.org/10.1038/nrg3813
%5Curl%7Bhttp://www.deeplearningbook.org%7D
https://doi.org/10.1007/s00018-007-7447-6
https://doi.org/10.1007/s00018-007-7447-6
https://doi.org/10.1007/s00018-007-7447-6
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1093/nar/gkh429
https://doi.org/10.1093/nar/gkh429
https://doi.org/10.1093/nar/gkh429
https://doi.org/10.1101/cshperspect.a032656
https://doi.org/10.1101/cshperspect.a032656
https://doi.org/10.1016/0092-8674(87)90577-0
https://doi.org/10.1016/0092-8674(87)90577-0
https://doi.org/10.48550/ARXIV.2207.01848
https://arxiv.org/abs/2207.01848
https://arxiv.org/abs/2207.01848
https://doi.org/10.1186/s12964-016-0132-3
https://doi.org/10.1186/s12964-016-0132-3
https://doi.org/10.1186/s12964-016-0132-3
http://jmlr.org/papers/v24/20-1355.html
http://jmlr.org/papers/v24/20-1355.html
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2

BIBLIOGRAPHY

[25] Prakash Kharel et al. “Properties and biological impact of RNA G-quadruplexes: from
order to turmoil and back”. In: Nucleic Acids Research 48.22 (Dec. 2020), pp. 12534–
12555. doi: 10.1093/nar/gkaa1126. url: https://doi.org/10.1093/nar/gkaa1126.

[26] Chun Kit Kwok, Giovanni Marsico, and Shankar Balasubramanian. “Detecting RNA G-
Quadruplexes (rG4s) in the Transcriptome”. In: Cold Spring Harbor Perspectives in Biology
10.7 (July 2018), a032284. doi: 10.1101/cshperspect.a032284. url: https://doi.org/
10.1101/cshperspect.a032284.

[27] Thomas X. Lu and Marc E. Rothenberg. “Diagnostic, functional, and therapeutic roles
of microRNA in allergic diseases”. In: Journal of Allergy and Clinical Immunology 132.1
(July 2013), pp. 3–13. doi: 10.1016/j.jaci.2013.04.039. url: https://doi.org/10.
1016/j.jaci.2013.04.039.

[28] Thomas X. Lu and Marc E. Rothenberg. “MicroRNA”. In: Journal of Allergy and Clinical
Immunology 141.4 (Apr. 2018), pp. 1202–1207. doi: 10.1016/j.jaci.2017.08.034. url:
https://doi.org/10.1016/j.jaci.2017.08.034.

[29] Luciano E. Marasco and Alberto R. Kornblihtt. “The physiology of alternative splicing”.
In: Nature Reviews Molecular Cell Biology 24.4 (Oct. 2022), pp. 242–254. doi: 10.1038/
s41580-022-00545-z. url: https://doi.org/10.1038/s41580-022-00545-z.

[30] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
Software available from tensorflow.org. 2015. url: https://www.tensorflow.org/.

[31] Stefania Millevoi, Hervé Moine, and Stéphan Vagner. “G-quadruplexes in RNA biology”.
In: Wiley Interdisciplinary Reviews: RNA 3.4 (Apr. 2012), pp. 495–507. doi: 10.1002/
wrna.1113. url: https://doi.org/10.1002/wrna.1113.

[32] Simona Panni et al. “Non-coding RNA regulatory networks”. In: Biochimica et Biophysica
Acta (BBA) - Gene Regulatory Mechanisms 1863.6 (June 2020), p. 194417. doi: 10.1016/
j.bbagrm.2019.194417. url: https://doi.org/10.1016/j.bbagrm.2019.194417.

[33] Joel I. Perez-Perri et al. “Discovery of RNA-binding proteins and characterization of their
dynamic responses by enhanced RNA interactome capture”. In: Nature Communications
9.1 (Oct. 2018). doi: 10.1038/s41467-018-06557-8. url: https://doi.org/10.1038/
s41467-018-06557-8.

[34] Monica J. Piatek and Andreas Werner. “Endogenous siRNAs: regulators of internal affairs”.
In: Biochemical Society Transactions 42.4 (Aug. 2014), pp. 1174–1179. doi: 10.1042/
bst20140068. url: https://doi.org/10.1042/bst20140068.

[35] Rayner M. L. Queiroz et al. “Comprehensive identification of RNA–protein interactions
in any organism using orthogonal organic phase separation (OOPS)”. In: Nature Biotech-
nology 37.2 (Jan. 2019), pp. 169–178. doi: 10.1038/s41587-018-0001-2. url: https:
//doi.org/10.1038/s41587-018-0001-2.

[36] Janosh Riebesell. Random TikZ Collection. Computer program. Version 0.1.0. Dec. 27,
2022. doi: 10.5281/zenodo.7486911. url: https://github.com/janosh/tikz.

[37] Endre Sebestyén et al. “Large-scale analysis of genome and transcriptome alterations in
multiple tumors unveils novel cancer-relevant splicing networks”. In: Genome Research 26.6
(Apr. 2016), pp. 732–744. doi: 10.1101/gr.199935.115. url: https://doi.org/10.1101/
gr.199935.115.

[38] Dipankar Sen and Walter Gilbert. “Formation of parallel four-stranded complexes by
guanine-rich motifs in DNA and its implications for meiosis”. In: Nature 334.6180 (July
1988), pp. 364–366. doi: 10.1038/334364a0. url: https://doi.org/10.1038/334364a0.

31

https://doi.org/10.1093/nar/gkaa1126
https://doi.org/10.1093/nar/gkaa1126
https://doi.org/10.1101/cshperspect.a032284
https://doi.org/10.1101/cshperspect.a032284
https://doi.org/10.1101/cshperspect.a032284
https://doi.org/10.1016/j.jaci.2013.04.039
https://doi.org/10.1016/j.jaci.2013.04.039
https://doi.org/10.1016/j.jaci.2013.04.039
https://doi.org/10.1016/j.jaci.2017.08.034
https://doi.org/10.1016/j.jaci.2017.08.034
https://doi.org/10.1038/s41580-022-00545-z
https://doi.org/10.1038/s41580-022-00545-z
https://doi.org/10.1038/s41580-022-00545-z
https://www.tensorflow.org/
https://doi.org/10.1002/wrna.1113
https://doi.org/10.1002/wrna.1113
https://doi.org/10.1002/wrna.1113
https://doi.org/10.1016/j.bbagrm.2019.194417
https://doi.org/10.1016/j.bbagrm.2019.194417
https://doi.org/10.1016/j.bbagrm.2019.194417
https://doi.org/10.1038/s41467-018-06557-8
https://doi.org/10.1038/s41467-018-06557-8
https://doi.org/10.1038/s41467-018-06557-8
https://doi.org/10.1042/bst20140068
https://doi.org/10.1042/bst20140068
https://doi.org/10.1042/bst20140068
https://doi.org/10.1038/s41587-018-0001-2
https://doi.org/10.1038/s41587-018-0001-2
https://doi.org/10.1038/s41587-018-0001-2
https://doi.org/10.5281/zenodo.7486911
https://github.com/janosh/tikz
https://doi.org/10.1101/gr.199935.115
https://doi.org/10.1101/gr.199935.115
https://doi.org/10.1101/gr.199935.115
https://doi.org/10.1038/334364a0
https://doi.org/10.1038/334364a0

BIBLIOGRAPHY

[39] Jonathon Shlens. A Tutorial on Principal Component Analysis. 2014. arXiv: 1404.1100
[cs.LG].

[40] Ahmed Sidali et al. “AU-Rich Element RNA Binding Proteins: At the Crossroads of Post-
Transcriptional Regulation and Genome Integrity”. In: International Journal of Molecular
Sciences 23.1 (Dec. 2021), p. 96. doi: 10.3390/ijms23010096. url: https://doi.org/10.
3390/ijms23010096.

[41] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfit-
ting”. In: Journal of Machine Learning Research 15.56 (2014), pp. 1929–1958. url: http:
//jmlr.org/papers/v15/srivastava14a.html.

[42] Martina Tassinari, Sara N Richter, and Paolo Gandellini. “Biological relevance and ther-
apeutic potential of G-quadruplex structures in the human noncoding transcriptome”. In:
Nucleic Acids Research 49.7 (Mar. 2021), pp. 3617–3633. doi: 10.1093/nar/gkab127. url:
https://doi.org/10.1093/nar/gkab127.

[43] The pandas development team. pandas-dev/pandas: Pandas. Version 1.5.1. Feb. 2020. doi:
10.5281/zenodo.3509134. url: https://doi.org/10.5281/zenodo.3509134.

[44] Bin Tian and James L. Manley. “Alternative polyadenylation of mRNA precursors”. In:
Nature Reviews Molecular Cell Biology 18.1 (Sept. 2016), pp. 18–30. doi: 10.1038/nrm.
2016.116. url: https://doi.org/10.1038/nrm.2016.116.

[45] Jakob Trendel et al. “The Human RNA-Binding Proteome and Its Dynamics during Trans-
lational Arrest”. In: Cell 176.1-2 (Jan. 2019), 391–403.e19. doi: 10.1016/j.cell.2018.
11.004. url: https://doi.org/10.1016/j.cell.2018.11.004.

[46] Erika C. Urdaneta et al. “Purification of cross-linked RNA-protein complexes by phenol-
toluol extraction”. In: Nature Communications 10.1 (Mar. 2019). doi: 10.1038/s41467-
019-08942-3. url: https://doi.org/10.1038/s41467-019-08942-3.

[47] Mihaly Varadi et al. “AlphaFold Protein Structure Database: massively expanding the
structural coverage of protein-sequence space with high-accuracy models”. In: Nucleic Acids
Research 50.D1 (Nov. 2021), pp. D439–D444. doi: 10.1093/nar/gkab1061. url: https:
//doi.org/10.1093/nar/gkab1061.

[48] Muhamad Yani, M.T. Budhi Irawan S Si., and M.T. Casi Setiningsih S.T. “Application
of Transfer Learning Using Convolutional Neural Network Method for Early Detection of
Terry’s Nail”. In: Journal of Physics: Conference Series 1201.1 (May 2019), p. 012052.
doi: 10.1088/1742- 6596/1201/1/012052. url: https://doi.org/10.1088/1742-
6596/1201/1/012052.

32

https://arxiv.org/abs/1404.1100
https://arxiv.org/abs/1404.1100
https://doi.org/10.3390/ijms23010096
https://doi.org/10.3390/ijms23010096
https://doi.org/10.3390/ijms23010096
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1093/nar/gkab127
https://doi.org/10.1093/nar/gkab127
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1038/nrm.2016.116
https://doi.org/10.1038/nrm.2016.116
https://doi.org/10.1038/nrm.2016.116
https://doi.org/10.1016/j.cell.2018.11.004
https://doi.org/10.1016/j.cell.2018.11.004
https://doi.org/10.1016/j.cell.2018.11.004
https://doi.org/10.1038/s41467-019-08942-3
https://doi.org/10.1038/s41467-019-08942-3
https://doi.org/10.1038/s41467-019-08942-3
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1088/1742-6596/1201/1/012052
https://doi.org/10.1088/1742-6596/1201/1/012052
https://doi.org/10.1088/1742-6596/1201/1/012052

Supplementary Materials

1 import requests , sys , json
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 if sys.version_info [0] < 3:
6 from StringIO import StringIO
7 else:
8 from io import StringIO
9

10 # Documentation: https ://www.uniprot.org/help/api
11 WEBSITE_API = "https :// rest.uniprot.org/"
12

13 # Documentation: https ://www.ebi.ac.uk/proteins/api/doc/
14 PROTEINS_API = "https ://www.ebi.ac.uk/proteins/api"
15

16 # Helper function to download data
17 def get_url(url , ** kwargs):
18 response = requests.get(url , ** kwargs);
19

20 if not response.ok:
21 print(response.text)
22 response.raise_for_status ()
23 sys.exit()
24

25 return response
26

27 r = get_url(f"""{WEBSITE_API }/ uniprotkb/stream?query=
28 (taxonomy_id :10090) AND (reviewed:true)&fields=id,accession ,
29 length ,sequence&format=tsv""")
30

31 p = StringIO(r.text)
32 df = pd.read_csv(p, sep="\t")

Listing 5.1: Programmatic access to Uniprot.

33

SUPPLEMENTARY MATERIALS

1 import os
2 import pandas as pd
3 from tqdm.notebook import tqdm_notebook
4 import tqdm
5

6 my_dir = ’/home/rob/Desktop/try with stride/PDB_files ’
7 def parse_txt_file(my_file):
8 with open(my_file) as myfile:
9 content = myfile.readlines ()

10 my_str = ’’
11 for el in content:
12 if "Detailed secondary structure" in el:
13 my_str += el
14 content = content[content.index(my_str)+3:]
15 new_list = []
16 for el in content:
17 new_list.append(el.split())
18 struct_string = "".join([el[5] for el in new_list])
19

20 return struct_string
21

22 def get_structures(path):
23 file_count = sum(len(files) for _, _, files in os.walk(path))-3
24 structures = []
25 # creating progress bar
26 with tqdm.notebook.tqdm(total=file_count) as pbar:
27 for filename in os.listdir(path):
28 ext = os.path.splitext(filename)[-1]. lower()
29 if ext == ".pdb":
30 cmd = "./ stride {fname} -f{output}".format(
31 fname = filename , output = "prova.txt")
32 so = os.popen(cmd).read()
33

34 # open txt file
35 struct_string = parse_txt_file("prova.txt")
36 structures.append ((filename.split("-")[1], struct_string))
37 pbar.update (1)
38 return structures
39

40 df = pd.DataFrame(get_structures(my_dir))

Listing 5.2: Protein secondary structure from PDB files.

34

SUPPLEMENTARY MATERIALS

1 df = pd.read_excel(my_file , index_col=None , na_values =[’NA’])
2

3 # Define dependent variable that needs to be predicted
4 y = df["isRG4BP"]. values
5

6 # Define independent variable
7 x = df.drop("isRG4BP", axis = 1)
8

9 # Undersampling
10 from collections import Counter
11 from imblearn.under_sampling import RandomUnderSampler
12

13 rus = RandomUnderSampler(sampling_strategy =0.2, random_state =42)
14 """
15 "sampling_strategy" is the desired ratio of the number of samples in the minority

class over the number of samples in the majority class after resampling
16 """
17

18 x_under_sampled , y_under_sampled = rus.fit_resample(x, y)
19

20 print(’Original dataset shape %s’ % Counter(y))
21 print(’Resampled dataset shape %s’ % Counter(y_under_sampled))
22

23 # Oversampling
24 from imblearn.over_sampling import RandomOverSampler
25 ros = RandomOverSampler(random_state =0)
26

27 x_over_sampled , y_over_sampled = ros.fit_resample(x_under_sampled , y_under_sampled)
28 df = pd.concat ([x_over_sampled , y_over_sampled], axis =1)

Listing 5.3: Over- and undersampling technique used to reduce the imbalances between positives
and negatives in the dataset.

35

SUPPLEMENTARY MATERIALS

Figure 5.1: Architecture
of the model obtained us-
ing AutoKeras.

36

SUPPLEMENTARY MATERIALS

1 import keras
2 import tensorflow as tf
3 import pandas as pd
4 import numpy as np
5 from sklearn.utils import shuffle
6 from sklearn.model_selection import train_test_split
7 from tensorflow.keras.layers import IntegerLookup
8 from tensorflow.keras.layers import Normalization
9 from tensorflow.keras.layers import StringLookup

10 from keras.layers import Embedding , Input , Flatten , Dense , BatchNormalization
11

12 my_file = "Dataset_no_RBPs_25_12.xlsx"
13 df = pd.read_excel(my_file , index_col=None , na_values =[’NA’])
14 df["isRG4BP"] = df["isRG4BP"]. astype(int) #convert true/false to 1/0
15 df = shuffle(df) #shuffle rows
16

17 # The part where the dataset was over - and undersampled to reduce the
18 # imabalances is not shown here
19

20 # Splitting into training , validation and test set
21 test_dataframe = df.sample(frac =0.3, random_state =1337)
22 train_dataframe = df.drop(test_dataframe.index)
23 val_dataframe = train_dataframe.sample(frac =0.2, random_state =1337)
24 train_dataframe = train_dataframe.drop(val_dataframe.index)
25

26 # Generating tf.data.Dataset objects for each dataframe
27 def dataframe_to_dataset(dataframe , batch_size =64):
28 dataframe = dataframe.copy()
29 labels = dataframe.pop("isRG4BP")
30 ds = tf.data.Dataset.from_tensor_slices ((dict(dataframe), labels))
31 ds = ds.shuffle(buffer_size=len(dataframe))
32 ds = ds.batch(batch_size)
33 ds = ds.prefetch(batch_size)
34 return ds
35

36 batch_size = 32;
37 test_ds = dataframe_to_dataset(test_dataframe , batch_size=batch_size)
38 train_ds = dataframe_to_dataset(train_dataframe , batch_size=batch_size)
39 val_ds = dataframe_to_dataset(val_dataframe , batch_size=batch_size)
40

41 def encode_numerical_feature(feature , name , dataset):
42 # Create a Normalization layer for our feature
43 normalizer = Normalization ()
44

45 # Prepare a Dataset that only yields our feature
46 feature_ds = dataset.map(lambda x, y: x[name])
47 feature_ds = feature_ds.map(lambda x: tf.expand_dims(x, -1))
48

49 # Learn the statistics of the data
50 normalizer.adapt(feature_ds)
51

52 # Normalize the input feature
53 encoded_feature = normalizer(feature)
54 return encoded_feature
55

56 def encode_categorical_feature(feature , name , dataset , is_string):
57 lookup_class = StringLookup if is_string else IntegerLookup
58 # in this case we’ll only use integerlookup
59 # Create a lookup layer which will turn strings into integer indices
60 lookup = lookup_class(output_mode="binary")
61

62 # Prepare a Dataset that only yields our feature

37

SUPPLEMENTARY MATERIALS

63 feature_ds = dataset.map(lambda x, y: x[name])
64 feature_ds = feature_ds.map(lambda x: tf.expand_dims(x, -1))
65

66 # Learn the set of possible string values and assign them a fixed integer index
67 lookup.adapt(feature_ds)
68

69 # Turn the string input into integer indices
70 encoded_feature = lookup(feature)
71 return encoded_feature
72

73 # Categorical features encoded as integers
74 dom1 = keras.Input(shape =(1,), name="dom1", dtype="int64")
75 dom2 = keras.Input(shape =(1,), name="dom2", dtype="int64")
76

77 # Numerical features
78 length = keras.Input(shape =(1,), name="Length")
79 disordered_perc = keras.Input(shape =(1,), name="% disordered")
80 C_perc = keras.Input(shape =(1,), name="% C")
81 H_perc = keras.Input(shape =(1,), name="% H")
82 G_perc = keras.Input(shape =(1,), name="% G")
83 I_perc = keras.Input(shape =(1,), name="% I")
84 E_perc = keras.Input(shape =(1,), name="% E")
85 B_perc = keras.Input(shape =(1,), name="% B")
86 T_perc = keras.Input(shape =(1,), name="% T")
87

88 all_inputs = [dom1 , dom2 , length , disordered_perc , C_perc , H_perc , G_perc , I_perc ,
E_perc , B_perc , T_perc]

89

90 # Integer categorical features
91 dom1_encoded = encode_categorical_feature(dom1 , "dom1", train_ds , False)
92 dom2_encoded = encode_categorical_feature(dom2 , "dom2", train_ds , False)
93

94 # Numerical features
95 length_encoded = encode_numerical_feature(length , "Length", train_ds)
96 disordered_perc_encoded = encode_numerical_feature(disordered_perc , "% disordered",

train_ds)
97 C_perc_encoded = encode_numerical_feature(C_perc , "% C", train_ds)
98 H_perc_encoded = encode_numerical_feature(H_perc , "% H", train_ds)
99 G_perc_encoded = encode_numerical_feature(G_perc , "% G", train_ds)

100 I_perc_encoded = encode_numerical_feature(I_perc , "% I", train_ds)
101 E_perc_encoded = encode_numerical_feature(E_perc , "% E", train_ds)
102 B_perc_encoded = encode_numerical_feature(B_perc , "% B", train_ds)
103 T_perc_encoded = encode_numerical_feature(T_perc , "% T", train_ds)
104

105

106 all_features = layers.concatenate ([dom1_encoded , dom2_encoded , length_encoded ,
disordered_perc_encoded , C_perc_encoded , H_perc_encoded , G_perc_encoded ,
I_perc_encoded , E_perc_encoded , B_perc_encoded , T_perc_encoded])

107

108 # Creating the layers
109

110 dense1 = layers.Dense (128, activation="relu")(all_features)
111 drop = layers.Dropout (0.2)(dense1)
112 relu1 = layers.ReLU (128)(drop)
113

114 dense2 = layers.Dense (256, activation=’relu’)(relu1)
115 relu2 = layers.ReLU (256)(dense2)
116

117 dense3 = layers.Dense (256, activation=’relu’)(relu2)
118 drop1 = layers.Dropout (0.3)(dense3)
119

120 output = layers.Dense(1, activation=’sigmoid ’)(drop1)

38

SUPPLEMENTARY MATERIALS

121

122 model = keras.Model(all_inputs , output)
123

124 opt = keras.optimizers.Adam(learning_rate =0.001)
125 model.compile(opt , "binary_crossentropy", metrics =["accuracy"])
126

127 # Evaluating the model on the test dataset
128 loss , accuracy = model.evaluate(test_ds)
129 print("Accuracy:", accuracy)
130 print("Loss:", loss)

Listing 5.4: Code used for the construction of model A.

dom1 InputLayer

input: output:

[(None, 1)] [(None, 1)]

integer_lookup IntegerLookup

input: output:

(None, 1) (None, 62)

dom2 InputLayer

input: output:

[(None, 1)] [(None, 1)]

integer_lookup_1 IntegerLookup

input: output:

(None, 1) (None, 44)

Length InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization Normalization

input: output:

(None, 1) (None, 1)

% disordered InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization_1 Normalization

input: output:

(None, 1) (None, 1)

% C InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization_2 Normalization

input: output:

(None, 1) (None, 1)

% H InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization_3 Normalization

input: output:

(None, 1) (None, 1)

% G InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization_4 Normalization

input: output:

(None, 1) (None, 1)

% I InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization_5 Normalization

input: output:

(None, 1) (None, 1)

% E InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization_6 Normalization

input: output:

(None, 1) (None, 1)

% B InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization_7 Normalization

input: output:

(None, 1) (None, 1)

% T InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization_8 Normalization

input: output:

(None, 1) (None, 1)

concatenate Concatenate

input: output:

[(None, 62), (None, 44), (None, 1), (None, 1), (None, 1), (None, 1), (None, 1), (None, 1), (None, 1), (None, 1), (None, 1)] (None, 115)

dense Dense

input: output:

(None, 115) (None, 128)

dropout Dropout

input: output:

(None, 128) (None, 128)

re_lu ReLU

input: output:

(None, 128) (None, 128)

dense_1 Dense

input: output:

(None, 128) (None, 256)

re_lu_1 ReLU

input: output:

(None, 256) (None, 256)

dense_2 Dense

input: output:

(None, 256) (None, 256)

dropout_1 Dropout

input: output:

(None, 256) (None, 256)

dense_3 Dense

input: output:

(None, 256) (None, 1)

dom1 InputLayer

input: output:

[(None, 1)] [(None, 1)]

embedding Embedding

input: output:

(None, 1) (None, 1, 20)

dom2 InputLayer

input: output:

[(None, 1)] [(None, 1)]

embedding_1 Embedding

input: output:

(None, 1) (None, 1, 20)

flatten Flatten

input: output:

(None, 1, 20) (None, 20)

flatten_1 Flatten

input: output:

(None, 1, 20) (None, 20)

Length InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization Normalization

input: output:

(None, 1) (None, 1)

% disordered InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization_1 Normalization

input: output:

(None, 1) (None, 1)

% C InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization_2 Normalization

input: output:

(None, 1) (None, 1)

% H InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization_3 Normalization

input: output:

(None, 1) (None, 1)

% G InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization_4 Normalization

input: output:

(None, 1) (None, 1)

% I InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization_5 Normalization

input: output:

(None, 1) (None, 1)

% E InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization_6 Normalization

input: output:

(None, 1) (None, 1)

% B InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization_7 Normalization

input: output:

(None, 1) (None, 1)

% T InputLayer

input: output:

[(None, 1)] [(None, 1)]

normalization_8 Normalization

input: output:

(None, 1) (None, 1)

concatenate Concatenate

input: output:

[(None, 20), (None, 20), (None, 1), (None, 1), (None, 1), (None, 1), (None, 1), (None, 1), (None, 1), (None, 1), (None, 1)] (None, 49)

dense Dense

input: output:

(None, 49) (None, 256)

dropout Dropout

input: output:

(None, 256) (None, 256)

dense_1 Dense

input: output:

(None, 256) (None, 256)

dropout_1 Dropout

input: output:

(None, 256) (None, 256)

dense_2 Dense

input: output:

(None, 256) (None, 1)

Figure 5.2: Connectivity graphs of the two models built using keras. Top: model using one-hot
encoding. Bottom: model using embedding layer.

39

SUPPLEMENTARY MATERIALS

Model: "model"

 Layer (type) Output Shape Param #
===
 input_1 (InputLayer) [(None, 4, 14507)] 0

 cast_to_float32 (CastToFloa (None, 4, 14507) 0
 t32)

 expand_last_dim (ExpandLast (None, 4, 14507, 1) 0
 Dim)

 normalization (Normalizatio (None, 4, 14507, 1) 3
 n)

 conv2d (Conv2D) (None, 4, 14507, 32) 320

 conv2d_1 (Conv2D) (None, 4, 14507, 64) 18496

 max_pooling2d (MaxPooling2D (None, 2, 7253, 64) 0
)

 dropout (Dropout) (None, 2, 7253, 64) 0

 flatten (Flatten) (None, 928384) 0

 dropout_1 (Dropout) (None, 928384) 0

 dense (Dense) (None, 1) 928385

 classification_head_1 (Acti (None, 1) 0
 vation)

===
Total params: 947,204
Trainable params: 947,201
Non-trainable params: 3

Figure 5.3: Classification model obtained through autokeras.

40

	Introduction
	Post-Transcriptional Regulation of Gene Expression
	Non-Coding RNAs
	Cis Elements
	RNA-Binding Proteins

	RNA G-Quadruplexes
	RG4-Binding Proteins
	Making Predictions With Deep Learning Models
	Dropout Multi-Layer Perceptron
	Convolutional Neural Networks
	Structured Data Classification

	Aims
	Methods
	Data Sources
	QUADRatlas
	UniProt
	AlphaFold
	Stride

	Libraries for Dataset Creation
	Pandas
	NumPy

	Neural Network Development
	TabPFN
	AutoKeras
	Keras

	Data Preprocessing
	Sampling Methods
	One-Hot Encoding
	Embedding Layers
	Principal Component Analysis

	Results
	Dataset Preparation
	Structured Data Classification
	Image Classification
	Model Comparison

	Discussion and Conclusions
	Future Perspectives

	Bibliography
	Supplementary Materials

